

On The Preparation of Fluorine-18 Labelled XeF₂ and Chemical Exchange between Fluoride Ion and XeF₂

Neil Vasdev,^{†,‡} Bernard E. Pointner,[†] Raman Chirakal,^{*,†,‡} and Gary J. Schrobilgen^{*,†}

Contribution from the Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada, and Department of Nuclear Medicine, McMaster University Medical Centre and Hamilton Health Sciences, Hamilton, Ontario L8N 3Z5, Canada

Received April 26, 2002

Abstract: A recent report claims to have prepared [¹⁸F]XeF₂ by exchange between a large stoichiometric excess of XeF₂ and no-carrier-added ¹⁸F⁻, as salts of the [2,2,2-crypt-M⁺] (M = K or Cs) cations, in CH₂Cl₂ or CHCl₃ solvents at room temperature. Attempts to repeat this work have proven unsuccessful and have led to a critical reinvestigation of chemical exchange between fluoride ion, in the form of anhydrous [N(CH₃)₄]-[F] and [2,2,2-crypt-K][F], and XeF₂ in dry CH₂Cl₂ and CH₃CN solvents. It was shown, by use of ¹⁹F and ¹H NMR spectroscopies, that [2,2,2-crypt-K][F] rapidly reacts with CH₃CN solvent to form HF₂⁻, and with CH₂-Cl₂ solvent to form HF₂⁻, CH₂ClF, and CH₂F₂ at room temperature. Moreover, XeF₂ rapidly oxidizes 2,2,2-crypt in CH₂Cl₂ solvent at room temperature to form HF and HF₂⁻. Thus, the exchange between XeF₂ and no-carrier-added ¹⁸F⁻ reported in the prior work arises from exchange between XeF₂ and HF/HF₂⁻, and does not involve fluoride ion. However, naked fluoride ion has been shown to undergo exchange with XeF₂ under rigorously anhydrous and HF-free conditions. A two-dimensional ¹⁹F⁻¹⁹F EXSY NMR study demonstrated that [N(CH₃)₄][F] exchanges with XeF₂ in CH₃CN solvent, but exchange of HF₂⁻ with either XeF₂ or F⁻ is not detectable under these conditions. The exchange between XeF₂ and F⁻ is postulated to proceed by the formation of XeF₃⁻ as the exchange intermediate.

Introduction

Xenon difluoride has been extensively used as a fluorinating agent for a wide variety of inorganic and organic compounds.¹ Fluorine-18 (¹⁸F, 97% β^+ , $t_{1/2} = 109.7$ min, $E_{max} = 0.635$ MeV) labelled XeF₂ has been synthesized^{2.3} and used to prepare positron emitting medical imaging agents such as [¹⁸F]2-fluoro-2-deoxy-D-glucose⁴ and [¹⁸F]6-fluoro-L-DOPA.⁵ Fluorine-18 labelled XeF₂ was first prepared in our laboratories² by treating SO₂ClF solutions of XeF₂ with [¹⁸F]HF, [¹⁸F]SiF₄, or [¹⁸F]AsF₅. The exchanges are attributed to the Lewis acid properties of the labelled fluorides (eqs 1 and 2).

$$A^{18}F + XeF_2 \rightarrow FA^{18}F^- + XeF^+$$
(1)

$$FA^{18}F^- + XeF^+ \rightarrow FXe^{18}F + AF$$
(2)

$$A = H, SiF_3, or AsF_4$$

We have since shown that $[^{18}F]XeF_2$ can also be synthesized by the thermochemical reaction of carrier-added $[^{18}F]F_2$ and Xe.³ Appelman⁶ has also shown that very slow fluorine exchange occurs between XeF_2 and aqueous $H^{18}F$ (ca. 0.8% after 2 h at 0 °C).

A recent study in this journal by Pike et al.⁷ reports that nocarrier-added (nca) ¹⁸F-labelled KF and CsF, sequestered by 2,2,2-crypt (1,10-diaza-4,7,13,16,21,24-hexaoxabicyclo[8.8.8]hexacosane), undergo fluorine exchange with XeF2 at room temperature in CH₂Cl₂ and CHCl₃ solvents. The study also reports that the exchange was inhibited in CH₃CN solvent. It was claimed that the 2,2,2-crypt- M^+ cation (M = K or Cs) catalyzes ionization of XeF₂ in chlorinated solvents. Exchange experiments conducted in CH₂Cl₂ solutions required a large molar excess of XeF₂ relative to the cryptand (molar ratio of XeF₂:2,2,2-crypt:Cs₂CO₃ used in a typical exchange experiment was 56:1:0.29) for "efficient" exchange of nca ¹⁸F⁻ ion. When 2,2,2-crypt-K⁺ and CHCl₃ solvents were used, \leq 90% of the radioactivity was incorporated into XeF₂; however, yields were reported to be highly variable. This work is at apparent odds with earlier ¹⁸F-labelling experiments which have shown that fluoride ion, in the form of [N(n-Bu)₄][¹⁸F], does not exchange with XeF₂ in CH₂Cl₂ solvent after 30 min at room temperature.⁸

^{*}To whom correspondence should be addressed. E-mail: schrobil@ mcmaster.ca.

[†] Department of Chemistry, McMaster University.

[‡] Department of Nuclear Medicine, McMaster University Medical Centre. (1) Brel, V. K.; Pirkuliev, N. Sh.; Zefirov, N. S. *Russ. Chem. Rev.* **2001**, *70*,

⁽²⁾ Schrobilgen, G.; Firnau, G.; Chirakal, R.; Garnett, E. S. J. Chem. Soc.,

<sup>Chem. Commun. 1981, 198.
(3) Chirakal, R.; Firnau, G.; Schrobilgen G. J.; McKay, J.; Garnett, S. Int. J. Appl. Radiat. Isot. 1984, 35, 401.</sup>

⁽⁴⁾ Sood, S.; Firnau, G.; Garnett, E. S. Int. J. Appl. Radiat. Isot. 1983, 34, 743.

⁽⁵⁾ Firnau, G.; Chirakal, R.; Sood, S.; Garnett, E. S. J. Labelled Compd. Radiopharm. 1981, 18, 7.

 ⁽⁶⁾ Appelman, E. H. *Inorg. Chem.* **1967**, *6*, 1268.
 (7) Constantinou, M.; Aigbirhio, F. I.; Smith, R. G.; Ramsden, C. A.; Pike, V. W. *Lev. Chem. Soc* **2000**, 123, 1780.

<sup>W. J. Am. Chem. Soc. 2001, 123, 1780.
(8) Patrick, T. B.; Johri, K. K.; White, D. H.; Bertrand, W. S.; Mokhtar, R.; Kilbourn, M. R.; Welch, M. J. Can. J. Chem. 1986, 64, 138.</sup>

Fluoride ion and XeF₂ are known to react with a number of organic solvents. Christe and Wilson⁹ have demonstrated, by ¹H and ¹⁹F NMR spectroscopies, that anhydrous [N(CH₃)₄][F], so-called "naked fluoride", reacts with CH₃CN, CH₂Cl₂, and CHCl₃ solvents at room temperature. These authors have shown that fluoride ion reacts relatively slowly with CH₃CN to form HF_2^- and CH_2CN^- anions, according to eqs 3 and 4.

$$F^{-} + CH_3CN \rightarrow HF + CH_2CN^{-}$$
(3)

$$HF + F^{-} \rightarrow HF_{2}^{-} \tag{4}$$

Fluoride ion was also reported to react slowly with CH₂Cl₂, forming CH₂ClF as the only reported fluorination product, but rapidly with CHCl₃, resulting in all three possible halogen exchange products, CHCl₂F, CHClF₂, and CHF₃ in a 2:3:1 molar ratio. Holloway et al.¹⁰ showed, using ¹H and ¹⁹F NMR spectroscopies, that XeF₂ reacts with CH₂Cl₂ and CHCl₃ over a period of 2 days at room temperature. The reaction of XeF₂ with CH₂Cl₂ yielded predominantly CH₂ClF, CHCl₂F, and HF, with CH₂F₂, CHClF₂, CCl₂F₂, and CFCl₃ as minor (<0.5%) products, and that with CHCl₃ yielded CHCl₂F, CHClF₂, CHCl₃, and HF. Based on these findings, the authors suggested CH₃-CN or chlorofluorocarbons might be more appropriate solvents for XeF2 when the kinetics of the desired fluorination reactions are slow.

The aforementioned work and failed attempts in our laboratories to repeat the work of Pike et al.⁷ have led us to critically reassess the interaction of [2,2,2-crypt-K][F], and other fluoride ion sources, with XeF2 in CH2Cl2 and CH3CN solvents under rigorously anhydrous conditions by use of one- and twodimensional NMR techniques. The previous work⁷ has shown that radiochemical yields in CHCl₃ were highly variable. This is not surprising because fluoride ion has been shown to rapidly react with CHCl₃ to form all three possible solvent exchange products, CHCl₂F, CHClF₂, and CHF₃,⁹ and because XeF₂ has been shown to react with CHCl₃ to form CHFCl₂, CHF₂Cl, CFCl₃, and HF.¹⁰ Consequently, the role of CHCl₃ as a fluoride ion exchange medium was not reinvestigated in the present study.

Results and Discussion

Reaction of XeF₂ with 2,2,2-crypt and KF in CH₂Cl₂ Solvent. We have found that equimolar mixtures of XeF₂, KF, and 2,2,2-crypt in CH₂Cl₂ solvent detonate, under rigorously anhydrous conditions, when rapidly warmed from -196 °C to room temperature. The heat of reaction was, however, effectively dissipated in experiments where [2,2,2-crypt-K][F] was initially dissolved in CH₂Cl₂, followed by XeF₂ addition at ca. -140 °C to the frozen mixture and slow warming to room temperature over a period of ca. 1 h. The reaction mixture slowly changed from a colorless to a brown solution. The ¹⁹F NMR spectrum of this sample was complex, and several fluorination products were observed. The absence of characteristic ¹⁹F signals for XeF₂,¹¹ HF,¹² or HF₂⁻⁹ in the ¹⁹F NMR spectrum indicated that chemical exchange may occur between two or more of these

species, and/or all of the XeF₂ had reacted with the 2,2,2-crypt- K^+ to form HF and HF₂⁻, which underwent rapid fluorine exchange. The dominant ¹⁹F resonance was a broad singlet at -162.8 ppm ($\Delta \nu_{1/2}$, 46 Hz). Christe and Wilson¹³ have observed broad, exchange-averaged resonances for F⁻/HF₂⁻/HF mixtures in mixed water (10%)/CH₃CN solutions ranging from -118 to -170 ppm ($\Delta v_{1/2}$, 80 Hz), which have chemical shifts that are dependent upon the mole ratios of the components. Very weak triplets arising from CH₂F₂ at -142.1 ppm (²J_{HF}, 49 Hz), and CH₂ClF at -168.9 (²J_{HF}, 48 Hz) were also observed. In addition, a series of weak, equally intense pairs of ¹⁹F NMR resonances appears at -79.9, -80.2 and -85.5, -86.2 ppm, which have chemical shifts that are similar to those of the CF₂ resonances in perfluoro-2,2,2-crypt (OCF₂CF₂O, -81.4 ppm, s; OCF₂, -87.0 ppm, t, ${}^{3}J_{\text{FF}} \sim 1$ Hz; NCF₂, -88.5 ppm, t, ${}^{3}J_{\text{FF}} \sim 1$ Hz).¹⁴ It is therefore likely that partially fluorinated 2,2,2-cryptands result from oxidative fluorination of 2,2,2-crypt by XeF₂. A second series of weak and equally intense ¹⁹F resonances also appeared at -126.9, -127.2 and -131.7, -131.9 ppm. Although the detailed characterization of all fluorination products was beyond the scope of the present work, these findings clearly demonstrate that alkali metal (K⁺ and Cs⁺) 2,2,2-cryptands are not inert in these reactions and therefore do not function as "catalysts", as previously claimed.⁷

Stability of XeF2 and 2,2,2-crypt in CH2Cl2 Solvent. The reactivity of XeF2 with 2,2,2-crypt in the absence of KF was also investigated in CH₂Cl₂ solvent. Samples of XeF₂ and 2,2,2crypt were prepared in an equimolar ratio in CH₂Cl₂ solvent and warmed from -196 °C to room temperature over a period of ca. 1 h. A brown-colored solution resulted, similar to that arising from the reaction of [2,2,2-crypt-K][F] and XeF₂ in CH₂-Cl₂ (vide supra). The ¹⁹F NMR spectrum revealed several fluorination products, among which was an intense, broad singlet at -162.6 ppm ($\Delta v_{1/2}$, 35 Hz) that is attributable to HF₂^{-/}HF exchange. The corresponding ¹H resonance was observed as a broad singlet at 12.65 ppm ($\Delta v_{1/2}$, 40 Hz) and is intermediate with respect to those of HF $(7.00 \text{ ppm})^{12}$ and HF₂⁻ (16.20 ppm) in CH₂Cl₂ (this work; see Reactions of [2,2,2-crypt-K][F] with CH₃CN and CH₂Cl₂ Solvents). Two series of weak and equally intense pairs of ¹⁹F NMR resonances (-78.7, -79.2; -86.3, -87.0; -87.4, -87.9; -93.7, -94.4 ppm; and -127.3, -127.5; -127.8, -128.1; -132.6, -132.8; and -142.3, -142.6 ppm) that are similar to those observed for the XeF₂/2,2,2-crypt/KF system described above were observed, which are indicative of cryptand fluorination by XeF₂. The ¹H NMR spectrum of this sample revealed, in addition to CH2Cl2 (5.34 ppm) solvent, unreacted 2,2,2-crypt (OCH2CH2O, 3.58 ppm, s; OCH2, 3.66 ppm, t, ${}^{3}J_{HH} = 5$ Hz; NCH₂, 3.00 ppm, t, ${}^{3}J_{HH} = 5$ Hz) and a broad line (12.72 ppm, $\Delta v_{1/2}$, 56 Hz) that is assigned to HF and HF₂⁻ undergoing rapid proton exchange. It is reasonable to assume that protonated nitrogen centers of the fluorination products and unreacted 2,2,2-crypt may serve as the countercations; however, the NH protons can be expected to undergo chemical exchange with HF/HF2⁻ and therefore may also be represented by the resonance at 12.72 ppm. Several very weak, broad features were also observed in the ¹H NMR spectrum between 6 and 10 ppm.

⁽⁹⁾ Christe, K. O.; Wilson, W. W. J. Fluorine Chem. 1990, 47, 117.

⁽¹⁰⁾ Dukat, W. W. Schwisoli, W. W. J. Putomic Chem. 1990, 47, 117.
(10) Dukat, W. W.; Holloway, J. H.; Hope, E. G.; Townson, P. J.; Powell, R. L. J. Fluorine Chem. 1993, 62, 293.
(11) Gerken, M.; Schrobilgen, G. J. Coord. Chem. Rev. 2000, 197, 335.
(12) The ¹H and ¹⁹F chemical shifts of anhydrous HF in dry CH₂Cl₂ are 7.00 and -191.3 ppm, respectively, at 15 °C; this work.

⁽¹³⁾ Christe, K. O.; Wilson, W. W. J. Fluorine Chem. 1990, 46, 339.

 ⁽¹⁴⁾ Clark, W. D.; Lin, T. Y.; Maleknia, S. D.; Lagow, R. J. J. Org. Chem. 1990, 55, 5933.

A sample containing a 33:1 molar ratio of XeF₂ to 2,2,2crypt was warmed from −196 °C to room temperature over a period of 1 h and produced a two-phase mixture with a clear lower density layer and a minor yellow, higher density layer. Unlike the equimolar sample of XeF₂ and 2,2,2-crypt, the ¹⁹F NMR spectrum of the 33:1 molar ratio of XeF₂ to 2,2,2-crypt revealed the presence of XeF₂ (-175.1 ppm; ${}^{1}J({}^{129}\text{Xe}{}^{-19}\text{F})$, 5605 Hz), and a second weaker XeF₂ resonance in the second phase (-178.4 ppm; ${}^{1}J({}^{129}Xe{}^{-19}F)$, 5630 Hz), as well as a doublet arising from CHCl₂F (-81.0 ppm; ²J_{HF}, 53 Hz), and triplets arising from CH₂F₂ (-142.9 ppm; ²J_{HF}, 49 Hz) and CH₂-CIF (-170.4; ${}^{2}J_{\text{HF}}$, 48 Hz). The 19 F NMR spectrum also showed intense resonances at -176.4 and -181.2 ppm with line widths of 220 and 200 Hz, respectively, that are assigned to HF and HF₂⁻ undergoing rapid fluorine exchange in their respective phases. The corresponding ¹H resonances were observed at 11.64 and 11.27 ppm and had line widths of 64 and 22 Hz, respectively. Although the ¹H NMR spectrum of this sample was complicated by the presence of a second phase, it is noteworthy that 2,2,2-crypt was not observed, as in the equimolar sample, confirming that 2,2,2-crypt had fully reacted when a 33:1 molar excess of XeF2 in CH2Cl2 solvent had been allowed to react at room temperature for 1 h. These findings clearly contradict the previous study,⁷ which claims that a 56:1 molar ratio of XeF₂ to 2,2,2-crypt is required to achieve "efficient" exchange with ¹⁸F⁻ ion in CH₂Cl₂, and further confirms that 2,2,2-crypt is not inert under these reaction conditions. The NMR spectra show large amounts of HF and HF₂⁻ corresponding to the fluorination of the CH₂ groups of 2,2,2-crypt and the solvent by XeF₂. The fluorination products that result from the reaction of XeF₂ with 2,2,2-crypt are likely contained in the second, higher density phase. Scale up of the reaction for the purpose of characterizing the 2,2,2-crypt fluorination products was not attempted because of the exothermicity of the reaction in CH₂Cl₂. In view of the 56:1 molar ratio of XeF₂:2,2,2-crypt in the previous report,⁷ and the 33:1 molar ratio of XeF_2 :2,2,2crypt in the present study, it is clear that a significant amount of XeF₂ survives in the presence of HF generated in these reactions. Hydrogen fluoride has already been shown in our earlier ¹⁸F studies to promote fluorine exchange by acting as a weak fluoride ion acceptor toward XeF₂ (eqs 1 and 2).² Therefore, the exchange reported in the previous work⁷ cannot possibly arise from exchange of free F⁻ ion with XeF₂, but must arise from HF/HF₂⁻ exchange with XeF₂, where HF is in very large excess relative to HF₂⁻ in these nca ¹⁸F exchange studies.

Reaction of [N(CH₃)₄][F] and XeF₂ in CH₂Cl₂ Solvent. Christe and co-workers¹⁵ reported the synthesis of the "naked fluoride ion" source, anhydrous [N(CH₃)₄][F]. They demonstrated that [N(CH₃)₄][F] reacts with CH₃CN and chlorinated solvents.⁹ In the present study, an equimolar sample of [N(CH₃)₄]-[F] and XeF₂ in CH₂Cl₂ solvent was prepared to investigate the role of fluoride ion in chemical exchange with XeF₂ in the absence of 2,2,2-crypt. Reaction took place over a period of 1 day at room temperature without color change. The ¹⁹F NMR spectrum revealed the presence of CH₂F₂, CHCl₂F, and CH₂-ClF, in addition to XeF₂ and fluoride ion, and further confirmed that the fluorination of 2,2,2-crypt-M⁺ by XeF₂ was responsible for the vigorous reactions that occurred in equimolar mixtures of XeF₂ and [2,2,2-crypt-K][F] in CH₂Cl₂ solvent at room temperature (see Reaction of XeF₂ with 2,2,2-crypt and KF in CH₂Cl₂ Solvent). To verify that [2,2,2-crypt-K][F] demonstrates a reactivity similar to that of [N(CH₃)₄][F] in CH₃CN and CH₂-Cl₂ solvents, [2,2,2-crypt-K][F] was studied in these solvents by ¹H and ¹⁹F NMR spectroscopies.

Reactions of [2,2,2-crypt-K][F] with CH₃CN and CH₂Cl₂ Solvents. The ¹⁹F NMR spectrum of [2,2,2-crypt-K][F] in CH₃-CN, after 1 h at room temperature, showed two signals, a weak singlet (-75 ppm; $\Delta v_{1/2}$, 167 Hz) corresponding to F⁻ and an intense doublet (-147.1 ppm; ${}^{1}J_{\text{HF}}$, 121 Hz) assigned to HF₂^{-.9} The ¹H NMR spectrum showed, in addition to the solvent line (CH₃CN, 1.96 ppm) and 2,2,2-crypt (OCH₂CH₂O, 3.57 ppm, s; OCH₂, 3.52 ppm, t, ${}^{3}J_{HH} = 5.5$ Hz; NCH₂, 2.55 ppm, t, ${}^{3}J_{HH}$ = 5.5 Hz), a triplet at 16.33 ppm (${}^{1}J_{\text{HF}}$, 121 Hz) characteristic of HF2^{-.9} Using saturated solutions of anhydrous [N(CH3)4]-[F] as the fluoride ion source, CH₂CN⁻ has been previously detected as a broad singlet (line width not reported) at 9.1 ppm in the ¹H NMR spectrum, which was found to increase in intensity with time (up to several days).⁹ In the present study, CH₂CN⁻ was not observed when [2,2,2-crypt-K][F] was allowed to react in CH₃CN at room temperature over a 1 h period, likely because of the lower concentration of fluoride ion and shorter reaction time used when compared with the previous study,⁹ and the expected breadth of the resonance. This study confirms previous work which showed that the major product resulting from the reaction of fluoride ion with CH₃CN is HF₂⁻ when either [N(CH₃)₄][F]⁹ or [2,2,2-crypt-K][F]¹⁶ is used as the fluoride ion source.

The ¹⁹F NMR spectrum of [2,2,2-crypt-K][F] in CH₂Cl₂, after 1 h at room temperature, showed a weak singlet (-115 ppm; $\Delta v_{1/2}$, 242 Hz) for F⁻ and a triplet (-169.7 ppm; ¹J_{HF}, 48.0 Hz), characteristic of CH₂ClF. The ¹H NMR spectrum of the same sample showed CH₂ClF (5.92 ppm, d, ${}^{2}J_{\text{HF}}$, 48.0 Hz), in addition to the solvent line (CH₂Cl₂, 5.34 ppm), and 2,2,2-crypt (OCH₂CH₂O, 3.57 ppm, s; OCH₂, 3.49 ppm, t, ${}^{3}J_{HH} = 5.5$ Hz; NCH₂, 2.53 ppm, t, ${}^{3}J_{\rm HH} = 5.5$ Hz). A triplet was also observed in the present work in the ¹⁹F NMR spectrum (-142.8 ppm; ${}^{2}J_{\text{HF}}$, 49.9 Hz) that is characteristic of CH₂F₂.¹⁷ The triplet expected for CH₂F₂ in the ¹H NMR spectrum was not observed because it was masked by the CH₂Cl₂ solvent signal (the ¹H chemical shift of CH_2F_2 is reported at 5.62 ppm¹⁸). The ¹⁹F NMR spectrum of the HF₂⁻ anion was observed as a doublet $(-156.3 \text{ ppm}; {}^{1}J_{\text{HF}}, 122 \text{ Hz})$ and showed a triplet (16.20 ppm; ${}^{1}J_{\text{HF}}$, 122 Hz) in the ${}^{1}\text{H}$ NMR spectrum. Christe and Wilson⁹ showed that CH2Cl2 undergoes slow halogen exchange with [N(CH₃)₄][F] at room temperature, giving CH₂ClF as the main reaction product, but did not report the presence of CH₂F₂. However, it was shown in the present study, using ¹⁹F NMR spectroscopy, that a sample of [N(CH₃)₄][F] in CH₂Cl₂, after 1 h at room temperature, resulted in the formation of CH₂F₂ as the major product, with CH2ClF as the minor product (the molar ratio of F⁻:CH₂F₂:CH₂ClF was 2.2:6.8:1.0). The formation of CH₂F₂ as a major product in this reaction is not surprising and is consistent with previously reported halogen exchange reactions between CH₂Cl₂ and alkali metal fluorides. Fukui and

⁽¹⁶⁾ Chirakal, R.; McCarry, B.; Lonergan, M.; Firnau, G.; Garnett, S. Appl. Radiat. Isot. 1995, 46, 149.

⁽¹⁷⁾ Hudlický, M. Organic Fluorine Chemistry; Plenum Press: New York, 1971; p 48.
(18) Lazeretti, P.; Taddei, F. Org. Magn. Reson. 1971, 3, 113.

⁽¹⁵⁾ Christe, K. O.; Wilson, W. W.; Wilson, R. D.; Bau, R.; Feng, J. J. Am. Chem. Soc. 1990, 112, 7619.

Figure 1. The 2-D $^{19}F^{-19}F$ EXSY spectrum of an equimolar sample of XeF₂ and [N(CH₃)₄][F] in CH₃CN solvent, acquired at 15 °C using a mixing time of 400 ms. The labels A, B, and C refer to F⁻, HF₂⁻, and XeF₂, respectively, and asterisks (*) denote natural-abundance ¹²⁹Xe satellites (¹*J*(¹²⁹Xe⁻¹⁹F), 5657 Hz).

Kitano¹⁹ synthesized CH₂ClF and CH₂F₂ in 19% and 17% yields, respectively, by passing CH₂Cl₂ through a mixture of NaF and KF in HO(CH₂)₂OH at 180-200 °C, and Verbeek and Sundermeyer²⁰ synthesized CH₂F₂ in 82% yield (34% conversion) by reaction of CH₂Cl₂ with a KF-HF melt at 300 °C. In agreement with the work of Christe and Wilson,9 HF2- was not observed in the present work when $[N(CH_3)_4][F]$ was allowed to react with CH₂Cl₂ for 1 h, whereas reaction of [2,2,2crypt-K][F] in CH₂Cl₂ resulted in the formation of HF₂⁻ after 1 h at room temperature. These findings further demonstrate that the previously reported⁷ exchange reaction between XeF₂ and [2,2,2-crypt-K][¹⁸F] was not catalyzed by 2,2,2-crypt, but rather resulted from exchange among HF, HF₂⁻, and XeF₂, as described above (see Stability of XeF2 and 2,2,2-crypt in CH2-Cl₂ Solvent) and in our earlier study.²

Fluoride Ion Exchange with XeF2. A two-dimensional (2-D) ${}^{19}\text{F}-{}^{19}\text{F}$ EXSY experiment demonstrates that fluoride ion exchanges with XeF₂ in CH₃CN solvent. The off-diagonal correlations (Figure 1) confirm exchange between an initially equimolar mixture of [N(CH₃)₄][F], -71.5 ppm ($\Delta \nu_{1/2} = 267$ Hz), and XeF₂, -178.2 ppm; ${}^{1}J({}^{129}Xe{}^{-19}F)$, 5657 Hz. It was also shown that $\mathrm{HF_2}^-$ (-143.8 ppm; $^1J_{\mathrm{HF}}$, 120 Hz) does not exchange with XeF2 or fluoride ion on the NMR time scale under the experimental conditions used in this study. The HF₂⁻ anion present in these samples was derived from fluoride attack on the solvent (eqs 3 and 4), as previously reported.⁹ The ¹⁹F exchange is postulated to proceed through the formation of trifluoroxenate(II), XeF₃⁻, anion as the exchange intermediate (eq 5). The exchange of XeF_2 with HF was also studied by

$$XeF_2 + F^- \rightleftharpoons XeF_3^-$$
 (5)

variable-temperature ¹⁹F and ¹²⁹Xe NMR spectroscopy of XeF₂

(19) Fukui, K.; Kitano, N. Japanese Patent 7761, 1957; Chem. Abstr. 1958, 52, 13773.

Verbeek, W.; Sundermeyer, W. Angew. Chem., Int. Ed. Engl. 1966, 5, 314; (20)Angew. Chem. 1966, 78, 307.

in anhydrous HF solvent and will be discussed in subsequent publications along with electron structure calculations and energy-minimized geometry of the novel XeF₃⁻ anion.²¹

Influence of Solvent and Vessel upon the Reactions of XeF₂ with Organic Substrates. It has been assumed that F⁻ ion exchange with XeF₂ proceeds by a dissociative mechanism. A report in this journal²² claims that Pyrex glass surfaces catalyze the ionization of XeF2 in CH2Cl2, CHCl3, CFCl3, and C_6F_6 solvents to presumably form the strong electrophile XeF⁺ (estimated electron affinity, 10.9 eV²³). There are numerous examples of stable XeF⁺ salts,^{24,25} and it is well recognized in the field of noble-gas chemistry that the XeF⁺ cation is only stable in a very limited number of inorganic solvent media which are not susceptible to oxidative attack by this cation, such as anhydrous HF and BrF₅; thus the formation of the strong electrophile, XeF⁺, as a reactive intermediate in organic solvents is unlikely and unfounded. A more likely scenario involves an HF-assisted exchange in which HF hydrogen bonds to and polarizes XeF₂, followed by nucleophilic attack at xenon by the fluorine of HF. Moreover, these authors²² also claimed that F⁻ ion exchange with XeF₂ does not occur under certain conditions, such as in an FEP vessel or in CH₃CN solvent, and it was suggested that CH₃CN inhibits the exchange of XeF₂ with [2,2,2-crypt-M][¹⁸F].⁷ Contrary to these claims, a 2-D ¹⁹F-¹⁹F EXSY experiment in this study has demonstrated that fluoride ion exchanges with XeF2 in CH3CN solvent contained in an FEP vessel (see Fluoride Ion Exchange with XeF₂).

Ramsden and Smith²² have also claimed that the catalytic effects of glass surfaces in electrophilic fluorination reactions using XeF₂ in dry CH₂Cl₂ circumvent the need for HF in reactions described as requiring HF catalysis. The alleged surface catalysis of XeF₂/F⁻ exchange is more likely attributable to HF attack of the glass surface. The origin of HF, as pointed out previously, may arise from occlusion of HF by XeF2,²⁶ as well as from solvent attack by XeF₂, as described above, and from a lack of truly anhydrous conditions (eq 6). Attack of glass

$$\operatorname{XeF}_{2} + \operatorname{H}_{2}\operatorname{O} \rightarrow \operatorname{Xe} + \frac{1}{2}\operatorname{O}_{2} + 2\operatorname{HF}$$
 (6)

by HF is a cyclic process, producing water which further reacts with and reduces XeF_2 to produce HF (eq 6). Moreover, the H₂O/HF/glass system is repeatedly emphasized in the literature of fluorine chemistry to introduce a variety of species, including boron- and silicon-containing Lewis acids,²⁷ which may also serve as fluorine exchange catalysts.²

Synthesis of [¹⁸F]XeF₂ by ¹⁸F⁻ Exchange with XeF₂ in CH2Cl2. There are also several major concerns relating to exchange of ¹⁸F-labelled fluoride ion with XeF₂ as previously reported.⁷ Among these are the large molar excess of XeF₂ relative to 2,2,2-crypt (56:1) and the high concentration (0.285

- Ramsden, C. A.; Smith, R. G. J. Am. Chem. Soc. 1998, 120, 6842.
- Schrobilgen, G. J. In Synthetic Fluorine Chemistry, Chambers, R. D., Olah, G. A., Prakash, G. K. S., Eds.; Wiley and Sons: New York, 1992; Chapter (23)1, pp 1-30.
- (24) Selig, H.; Holloway, J. H. In Topics in Current Chemistry; Boschke, F. L., Ed.; Springer-Verlag: Berlin, 1984; Vol. 124, pp 33-90. (25)
- Lehmann, J. F.; Mercier, H. P. A.; Schrobilgen, G. J. Coord. Chem. Rev., in press.
- Shellhamer, D. F.; Chua Chiaco, M.; Gallego, K. M.; Low, W. S. C.; Carter, (26)B.; Heasley, V. L.; Chapman, R. D. J. Fluorine Chem. 1995, 72, 83. (27) Janzen, A. F. Coord. Chem. Rev. 1994, 130, 355.

⁽²¹⁾ Vasdev, N.; Schrobilgen, G. J.; Chirakal, R.; Suontamo, R. J., to be submitted.

M) of XeF₂ in CH₂Cl₂ that was required to effect exchange with nca ${}^{18}\text{F}^-$ ion in 1 mL of CH₂Cl₂. Attempts to repeat the previous work⁷ and to exchange 10 mCi of nca ${}^{18}\text{F}^-$ ion (5.8 \times 10^{-10} mol), in the form of [2,2,2-crypt-K][¹⁸F], with XeF₂ in 1 mL of CH₂Cl₂ solvent at room temperature were unsuccessful in the present study. Separate HPLC experiments (Phenomenex, Hypersil C18, 5 μ m, 25 \times 0.46 cm, eluted with 60% CH₃CN/ H_2O , using a flow rate of 1.0 mL/min) were run for nca ${}^{18}F^{-1}$ and XeF₂ to establish their retention times. Sharp peaks corresponding to ${}^{18}\text{F}^-$ (3.1 min) and XeF₂ (UV, $\lambda = 254$ nm, 3.8 min) were obtained. The chromatograms acquired for the reaction of [2,2,2-crypt-K][¹⁸F] with XeF₂ in CH₂Cl₂ solvent at room temperature after 1 h were not reproducible. The UV trace showed a sharp peak with a retention time corresponding to XeF₂ (3.8 min); however, the radiochromatogram showed one broad, tailing ¹⁸F-containing peak that eluted from 4 to 6 min which was not identified. The broad peak is consistent with the coelution of several species, but no discrete ¹⁸F⁻ ion peak was observed. "Cold" experiments, described in previous sections, demonstrate that the system is complex and leads to several fluorinated products. The ¹⁸F exchange experiments described previously and here employed carbonate7 or bicarbonate, respectively. Both anions are known to accelerate the decomposition of XeF₂ in aqueous media.²⁸ The inability to separate ${}^{18}\text{F}^-$ from $[{}^{18}\text{F}]\text{XeF}_2$ in the radiochromatogram results because the ¹⁸F activity is distributed among XeF₂, F⁻, HF, and HF_2^- , as well as the products of solvent fluorination (vide supra).

Fluorine-18 exchange experiments between XeF₂ and ¹⁸Flabelled fluoride ion, in the form of a tetraalkylammonium salt, were not attempted because it is difficult to obtain rigorously anhydrous ¹⁸F-labelled fluoride salts. Consequently, the formation of fluoride ion hydrates, $F^{-}(H_2O)_n$ (n = 1-6),²⁹ in ¹⁸Flabelling experiments is expected to greatly attenuate the degree of fluoride ion "nakedness" in these studies, and the reaction of XeF₂ with coordinated water and trace amounts of other adventitious water is expected to lead to HF (eq 6) and HF_2^- (eq 4). Furthermore, the reaction of XeF₂ with CH₂Cl₂ is known to produce CH₂ClF, CHCl₂F, and HF, with CH₂F₂, CHClF₂, CCl₂F₂, and CFCl₃ as minor (<0.5%) products.¹⁰ These factors could also account for the failure of $[N(n-Bu_4)_4]^{[18}F]$ to undergo exchange with XeF₂ in CH₂Cl₂.⁸

Because multiple fluorination products have been shown to form in reactions of "cold" fluoride ion and XeF2 with CH3CN and CH₂Cl₂ solvents at room temperature after 1 h, these methods are also not practical routes for the preparation of [¹⁸F]-XeF₂ from nca ¹⁸F⁻ ion. Moreover, the resulting hydrochlorofluorocarbons can be highly toxic, i.e., CH₂ClF is a known carcinogen,³⁰ and thus pose problems for medicinal use if the toxins cannot be reliably separated.

Conclusions

The present work has demonstrated, by EXSY NMR studies, that XeF₂ exchanges with fluoride ion when a countercation, such as $N(CH_3)_4^+$, which is oxidatively resistant to XeF₂, is employed. The exchange is postulated to proceed through the XeF₃⁻ anion as the intermediate. Moreover, this study shows that a 33:1 molar ratio of XeF₂ to 2,2,2-crypt in CH₂Cl₂ solvent leads to fluorination of 2,2,2-crypt and CH₂Cl₂, producing CHCl₂F, CH₂F₂, CH₂ClF, and large amounts of HF and HF₂⁻. These findings establish that the previously claimed⁷ catalytic behavior of 2,2,2-crypt-M⁺ (and its implied inertness) in the ionization of XeF₂ and in fluoride ion exchange with XeF₂ are erroneous. Reactions of [2,2,2-crypt-K][18F] with XeF2 in CH2-Cl₂ solvent in the present study were not reproducible and were complicated by fluorinated side products, including large amounts of HF, that result from fluorination of 2,2,2-crypt and the solvent. The exchange observed in previous work⁷ is attributable to HF formation, in accord with earlier ¹⁸F-exchange studies which have shown that HF undergoes fluorine exchange with XeF₂ by acting as a weak fluoride ion acceptor toward XeF_2 (eqs 1 and 2).² It must also be concluded that exchange reactions between nca [2,2,2-crypt-M][18F] salts and XeF2 in CH_2Cl_2 at room temperature are not viable routes to [¹⁸F]XeF₂ for use in clinical work.

Experimental Section

CAUTION: We recommend that precautionary measures be established prior to repeating aspects of this work, particularly when ¹⁸F⁻ is employed. Rapid outgassing and/or detonation can result from the oxidation of 2,2,2-crypt by XeF₂ in CH₂Cl₂ if the reaction temperature is not properly moderated. Before beginning work with anhydrous HF, first-aid treatment procedures³¹⁻³³ should be available and known to all laboratory personnel. Disposal of samples containing XeF2 or HF were carried out by freezing the heat-sealed FEP sample tube in liquid nitrogen, followed by cutting off the tube top and inverting the open tube end in a mixture of ice and aqueous base solution inside a fumehood.

Nonlabelled Experiments. (a) Materials. Fluorine (Air Products) was used without further purification. Anhydrous hydrogen fluoride (Harshaw Chemical Co.) was purified as described previously³⁴ and stored in a Kel-F storage vessel equipped with a Kel-F valve until used. Hydrogen fluoride was transferred into reaction vessels by vacuum distillation on a stainless steel vacuum line through a submanifold fabricated from FEP and Kel-F. Literature methods were used for the synthesis of xenon difluoride,35 the naked fluoride ion source, anhydrous [N(CH₃)₄][F],¹⁵ for the drying of anhydrous potassium fluoride (J. T. Baker Chemical Company, 99.6%)³⁶ and 2,2,2-crypt (1,10-diaza-4,7,-13,16,21,24-hexaoxabicyclo[8.8.8]hexacosane) (Merck, 99%).37

Acetonitrile (HPLC grade, Caledon) was purified to electrochemical standards according to the literature procedure.³⁸ Dichloromethane (reagent grade, Caledon) was dried over CaH₂ powder (BDH Chemicals, 99.5%) for several days and vacuum distilled onto Davison Type 3A molecular sieves (Fisher Scientific) and stored in a dry glass bulb equipped with a 4-mm glass J. Young glass stopcock equipped with a PTFE barrel until used. Molecular sieves were dried under dynamic vacuum for 24 h at ca. 250 °C prior to use as a drying agent. Dried CH₂Cl₂ (¹H chemical shift 5.34 ppm) did not show water in the ¹H NMR spectrum under high gain conditions (the ¹H chemical shift of water in CH₂Cl₂ was determined from a spiked sample to be 1.58 ppm).

(b) Standard Techniques. The compounds used in this study were moisture-sensitive; consequently, all manipulations were carried out

- (32) Peters, D.; Miethchen, R. J. Fluorine Chem. 1996, 79, 161.
- (33) Segal, E. B. *Chem. Health Saf.* **2000**, 7, 18.
 (34) Emara, A. A. A.; Schrobilgen, G. J. *Inorg. Chem.* **1992**, *31*, 1323.
 (35) Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J.; Tsai, S. S. *Inorg.*
- Chem. 1993, 32, 386. (36) Christe, K. O.; Curtis, E. C.; Dixon, D. A.; Mercier, H. P.; Sanders, J. C.
- P.; Schrobilgen, G. J. J. Am. Chem. Soc. 1991, 113, 3351.
- (37) Campbell, J.; Mercier, H. P. A.; Santry, D. P.; Suontamo, R.; Borrmann, H.; Schrobilgen, G. J. *Inorg. Chem.* 2001, *40*, 233.
 (38) Winfield, J. M. J. Fluorine Chem. 1984, 25, 91.

⁽²⁸⁾ Beck, M. T.; Dózsa, L. J. Am. Chem. Soc. 1967, 89, 5713.

⁽²⁹⁾ Gerken, M.; Boatz, J. A.; Kornath, A.; Haiges, R.; Schneider, S.; Schroer, T.; Christe, K. O. J. Fluorine Chem. 2002, 116, 49.

⁽³⁰⁾ Lewis, R. J., Sr. Hazardous Chemicals Desk Reference, 4th ed.; John Wiley and Sons: New York, 1997; p 267.

⁽³¹⁾ Reinhardt, C. F.; Hume, W. G.; Linch, A. L.; Wetherhold, J. M. J. Chem. Educ. 1969, 46, A171.

on glass and metal vacuum line systems or in the moisture-free (<0.1%) nitrogen atmosphere of a Vacuum Atmospheres Model DLX drybox as previously described.³⁹ In instances where low-temperature sample preparations were required, samples were cooled inside the drybox by placing the FEP sample tubes inside a metal Dewar filled with 4.5 mm copper plated steel spheres previously cooled to ca. -140 °C inside the glass cryowell of the drybox.

Anhydrous CH₃CN and CH₂Cl₂ solvents were manipulated using a Pyrex glass vacuum line equipped with grease-free 6-mm J. Young glass stopcocks equipped with PTFE barrels. Pressures inside the vacuum manifold were monitored using a mercury manometer. Fluorine and anhydrous HF were handled on a metal vacuum line constructed from nickel and 316 stainless steel, and equipped with 316 stainless steel valves and fittings (Autoclave Engineers, Inc.). Vessels were attached to vacuum lines through thick-walled FEP tubing and $^{1}/_{4}$ -in. PTFE Swagelok connectors by means of PTFE compression fittings or $^{1}/_{4}$ -in. stainless steel Cajon Ultra-Torr connectors fitted with Viton rubber O-rings. Pressures were measured at ambient temperature using an MKS Model PDR-5B power supply and digital readout in conjunction with pressure transducers (effective range 0–1000 Torr) having inert wetted surfaces constructed of Inconel.

All preparative work was carried out in 4-mm-o.d. FEP tubes. One end of the tube was heat sealed by pushing it into the end of a 5-mmo.d. glass NMR tube previously heated in a Bunsen flame. The other end was fused to ca. 5 cm of $^{1}/_{4}$ -in.-o.d. FEP tubing, which was heat flared and fitted with a Kel-F valve. The FEP sample tubes were dried under dynamic vacuum for ca. 12 h on a glass vacuum line prior to transfer to a metal vacuum line where they were passivated with ca. 1 atm of F₂ for ca. 12 h. Samples were prepared in the drybox prior to addition of solvent (ca. 0.5 mL) and contained ca. 0.2 mmol of [N(CH₃)₄][F], KF, and/or 2,2,2-crypt, and the molar ratio of XeF₂ to the aforementioned reagent was adjusted. The sample containing a 33fold molar excess of XeF₂ to 2,2,2-crypt contained 0.942 and 0.0289 mmol, respectively.

The sample tubes used for recording the NMR spectra were heat sealed under dynamic vacuum at -196 °C using a miniature Nichrome wire resistance furnace. The sealed samples were stored submerged in liquid nitrogen. For NMR measurements, the 4-mm FEP tube was inserted into standard 5-mm precision Wilmad NMR tube before insertion into the NMR probe.

Fluorine-18 Labelling Experiments. (a) Materials. Anhydrous CH_3CN (Aldrich, 99.8%), anhydrous CH_2Cl_2 (Aldrich, 99.8%), Kryptofix 222 (Aldrich, 98%), KHCO₃ (British Drug Houses, 99.5%), and [¹⁸O]H₂O (Isotec, 98 atom %) were used without further purification. Xenon difluoride was prepared as described previously (vide supra).

(b) Standard Techniques. No-carrier-added ¹⁸F-fluoride was produced using a Siemens 11 MeV proton-only cyclotron (RDS 112) and by means of the nuclear reaction ¹⁸O(p,n)¹⁸F. The [¹⁸O]H₂O was separated from the ¹⁸F⁻ by passing the bolus through an anion exchange column (Bio-Rad, AG 11 A8 resin, 50–100 mesh, converted to HCO₃⁻ form). The ¹⁸F⁻ was subsequently eluted from the column using 1 mL of CH₃CN/H₂O (95/5) solution containing 8 mg of 2,2,2-crypt and 2 mg of KHCO₃ and the CH₃CN/H₂O was evaporated at 120 °C. The residue was redissolved in 1 mL of anhydrous CH₃CN and redried.

The dry $^{18}\text{F-containing}$ residue was redissolved in anhydrous CH_3-CN or anhydrous CH_2Cl_2 diluted to 10 mCi/mL, and 1 mL was

transferred to a covered Teflon or glass vessel containing 10–50 mg of XeF₂ (XeF₂ had been transferred in a glovebag purged with dry nitrogen). Aliquots of the resulting reaction mixtures were analyzed at various time intervals between 5 and 90 min on a reverse phase HPLC column (Phenomenex, Hypersil C18, 5 μ m, 25 × 0.46 cm) eluted with 60% CH₃CN (HPLC grade, Caledon) in water, at a flow rate of 1.0 mL/min. The eluates from the column were passed through a Waters 490E programmable multiwavelength detector (255 nm) and a Beckman radioisotope detector (Model 170). Both detectors were connected to a Waters Millenium Chromatography Manager.

Nuclear Magnetic Resonance Spectroscopy. Proton and ¹⁹F NMR spectra were referenced to external TMS and CFCl₃, respectively, at 30 °C. All spectra in this study were recorded unlocked without spinning the samples.

Proton and ¹⁹F NMR spectra of samples containing reaction mixtures of [2,2,2-crypt-K][F] with CH₃CN and CH₂Cl₂ were recorded on a Bruker AV-200 spectrometer. Proton and ¹⁹F spectra were acquired at 200.200 and 188.376 MHz, respectively. Proton spectra were obtained in eight scans, in 16 K memories over a 4.1 kHz spectral width corresponding to an acquisition time of 2.02 s and a data point resolution of 0.25 Hz/point. Fluorine-19 spectra were obtained in 300 scans, in 32 K memories over a 47.1 kHz spectral width corresponding to an acquisition time of 0.347 s and a data point resolution of 1.44 Hz/ point. Proton and ¹⁹F NMR spectra of samples prepared for investigation of the interaction of XeF2 with fluoride ion were recorded on a Bruker AV-300 spectrometer and referenced to external TMS and CFCl₃, respectively, at 30 °C. Proton and ¹⁹F spectra were acquired at 300.130 and 282.404 MHz, respectively. Proton spectra were obtained in eight scans, in 32 K memories over a 4.5 kHz spectral width corresponding to an acquisition time of 3.645 s and a data point resolution of 0.14 Hz/point. Fluorine-19 spectra were obtained in 1000 scans and in 32 K memories over a 33.8 kHz spectral width corresponding to an acquisition time of 0.131 s and a data point resolution of 1.03 Hz/ point.

Two-dimensional ¹⁹F–¹⁹F EXSY spectra were acquired at 470.55 MHz using a Bruker Avance DRX-500 spectrometer. Spectra were recorded in the phase sensitive mode, using the pulse sequence $90^{\circ}-t_{1}-90^{\circ}-t_{m}-90^{\circ}-ACQ$. A temperature of 15 °C was used in order to slow the formation of HF₂⁻ while maintaining solubility. 256 FIDs were recorded in the F1 dimension, with each FID acquired in 48 scans over a 60 kHz spectral width. Mixing times of 400 and 800 ms were employed.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for the award of a postgraduate scholarship (N.V.) and for support in the form of a research grant (G.J.S.), the Ontario Ministry of Education and Training for the award of an Ontario Graduate Scholarship (B.E.P.), and McMaster University for the award of James A. Morrison Memorial Scholarships (N.V. and B.E.P.). We also thank Dr. Donald W. Hughes, McMaster NMR Facility, for his assistance in acquiring the 2-D ¹⁹F–¹⁹F EXSY NMR spectra discussed in this study and the Department of Nuclear Medicine, McMaster University Medical Centre (Hamilton Health Sciences), for making their cyclotron facility available for this research.

JA020604Y

⁽³⁹⁾ Casteel, W. J., Jr.; Kolb, P.; LeBlond, N.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 1996, 35, 929.